Alternator ref. KH05520T Alternator type KH05520TO4D



## -GENERAL CHARACTERISTICS-

Voltage Type (V)400/230Altitude (m)0-1000Number of PhaseThree phaseAVR RegulationYesNumber of pole4Indication of protectionIP23

Capacity for maintaining short circuit at 3 In for 10 s

Winding type

Yes

Standard

### **Efficiency & Power**

Frequency (Hz) 50 Hz Nominal voltage (V) 400

|                     | Class H     |             |             |             | Class F     | Class B    |
|---------------------|-------------|-------------|-------------|-------------|-------------|------------|
|                     | 125°C/ 40°C | 130°C/ 25°C | 150°C/ 40°C | 163°C/ 27°C | 105°C/ 40°C | 80°C/ 40°C |
|                     | continuous  | standby     | standby     | standby     | continuous  | continuous |
| Nominal Rating(Kva) | 1400        | 1420        | 1470        | 1520        | 1280        | 1120       |
| Nominal Rating(KW)  | 1120        | 1136        | 1176        | 1216        | 1024        | 896        |
| Efficiency 100%     | 96.2        | 96.1        | 96.1        | 96          | 96.4        | 96.5       |

# -ELECTRICAL CHARACTERISTICS-

| Voltage regulation at established rating (+/- %)  | 0.5       |
|---------------------------------------------------|-----------|
| Insulation class                                  | Н         |
| T° class (H/125°), continuous 40°C                | H / 125°K |
| T° class (H/163°C), standby 27°C                  | H / 163°K |
| Wave form : NEMA=TIF                              | <40       |
| Unbalanced load acceptance ratio (%)              | 100       |
| Number of wires                                   | 12        |
| Total Harmonic Distortion in no-load DHT (%)      | 26        |
| Wave form : CEI=FHT                               | <2        |
| Total Harmonic Distortion, on linear load DHT (%) | 17        |
| Technology                                        | Brushless |
| L-L Harmonic Maximum - Single (%)                 | <3        |
| Deviation Factor (%)                              | 6         |
| Shaft Current                                     | <80       |
| Main Stator Capacitance to ground (mdf)           | 0.05      |

#### **Reactances**

| Direct axis synchro reactance unsaturated (Xd) (%)       | 359.3 |
|----------------------------------------------------------|-------|
| Direct axis transcient reactance saturated (X'd) (%)     | 15.1  |
| Direct axis subtranscient reactance saturated (X''d) (%) | 7.1   |
| Quadra axis synchro reactance unsaturated (Xq) (%)       | 120.3 |
| Quadra axis subtranscient reactance saturated (X"q) (%)  | 15.8  |
| Zero sequence reactance unsaturated (Xo) (%)             | 3.74  |
| Negative sequence reactance saturated (X2) (%)           | 9.93  |

#### **Short circuit ratio**

| Short circuit ratio (Kcc)              | 0.29 |
|----------------------------------------|------|
| Subtranscient time constant (T"d) (ms) | 22   |

Alternator ref. KH05520T Alternator type KH05520TO4D



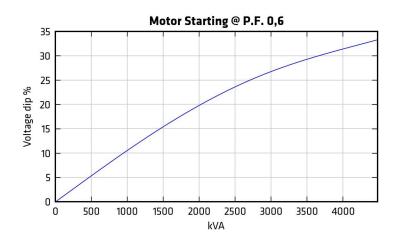
| Short circuit transcient time constant (T'd) (ms)                    | 310    |
|----------------------------------------------------------------------|--------|
| Open circuit time constant (T'do) (ms)                               | 9500   |
| Subtranscient time constant (T"q) (ms)                               | 22     |
| Leakage stator reactance (Xa)(%)                                     | 3.6    |
| Stator Resistance (Ra)(%)                                            | 0.081  |
| Armature time constant (Ta) (ms)                                     | 32     |
|                                                                      |        |
| No load excitation current (io) (A)                                  | 8.0    |
| Full load excitation current (ic) (A)                                | 3.3    |
| Full load excitation voltage (uc) (V)                                | 35.5   |
| Heat rejection (W)                                                   | 44241  |
| No load losses (W)                                                   | 18970  |
| Stator resistance (for 20°C ambient ) (Ω)                            | 0.0046 |
| Rotor resistance (for 20°C ambient ) (Ω)                             | 2.886  |
| Exciter resistance - stator/inductor (for 20° ambient ) ( $\Omega$ ) | 10.63  |
| Exciter resistance - rotor/armature (for 20° ambient ) ( $\Omega$ )  | 0.13   |
| Recovery time (Delta U = 20% transcient) (ms)                        | 200    |
| Engine start (Delta U = 20% perm. or 30% trans.) (kVA)               | 3657.5 |
| Transcient dip (4/4 load) - PF : 0,8 AR (%)                          | 14.2   |
| • • • • • • • • • • • • • • • • • • • •                              |        |

# Additional electrical characteristics-

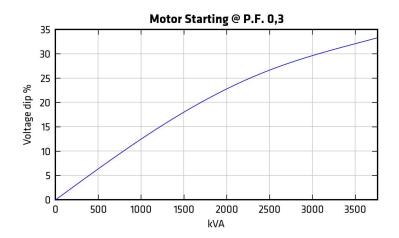
Winding X1, X2 auxiliary resistance (for 20° ambient ) ( $\Omega$ ) 0.4 Auxiliary winding X1, X2 excitation voltage at no load (V) 163 Auxiliary winding X1, X2 excitation voltage on load (V) 183 Winding Z1, Z2 auxiliary resistance (for 20° ambient ) ( $\Omega$ ) Auxiliary winding Z1, Z2 excitation voltage at no load (V)

## -MECHANICAL CHARACTERISTICS-

Number of bearing1Overspeed (rpm)2250CouplingDirect


Alternator ref. Alternator type

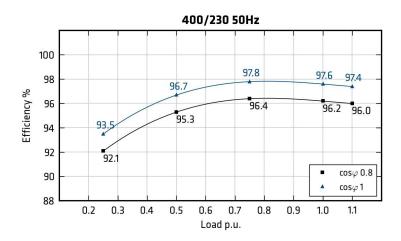
KH05520T KH05520TO4D



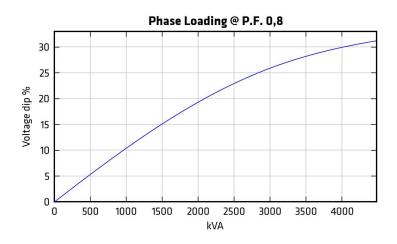

## -TECHNICAL CURVES-

Motor starting curve locked rotor (0,6PF)




Motor starting curve locked rotor (0,3PF)




Alternator ref. Alternator type KH05520T KH05520TO4D



### Efficiencies curve (by excitation system)



### Loading curve (by excitation system)



Alternator ref. KH05520T Alternator type KH05520TO4D



### Short circuit curve at no load and rated speed

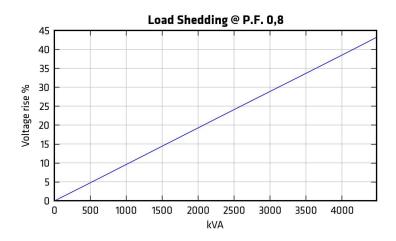
#### Influence due to connection

Curves shown are for star (Y) connection

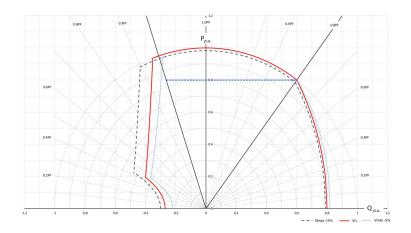
For other connections, use the following multiplication factors:

- Series to Parallel star : current value x 2
- Series to Series delta: current value x 1.72
- Series star to Parallel delta: current value x 3.44

#### Influence due to short-circuit


The indicated coefficient have to be used to correct the three phase short circuit curves values as a function of the type of short circuit voltage.

Alternator ref.
Alternator type

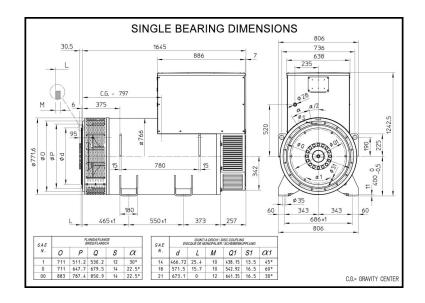

KH05520T KH05520TO4D



### Rejection curve (by excitation system)



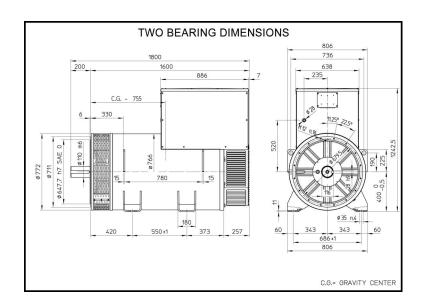
### Capability curve (PQ diagram)




Alternator ref. KH05520T Alternator type KH05520TO4D



## **DIMENSIONS-**

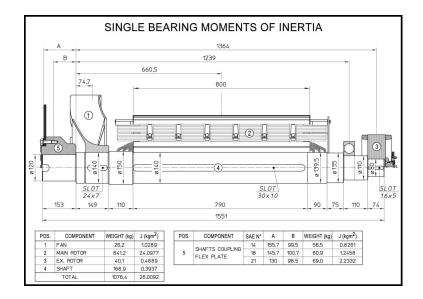

### Overall dimension drawing (Single bearing)



Alternator ref. KH05520T Alternator type KH05520TO4D



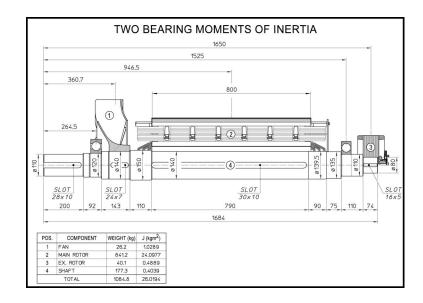
### Overall dimension drawing (Two bearings)




Alternator ref. KH05520T Alternator type KH05520TO4D



## -TORSIONAL ANALYSIS DATA-


Rotation part drawing for torsional vibration calculation (Single bearing)



Alternator ref. KH05520T Alternator type KH05520TO4D



### Rotation part drawing for torsional vibration calculation (Two bearings)

